If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-136x=-600
We move all terms to the left:
6x^2-136x-(-600)=0
We add all the numbers together, and all the variables
6x^2-136x+600=0
a = 6; b = -136; c = +600;
Δ = b2-4ac
Δ = -1362-4·6·600
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-136)-64}{2*6}=\frac{72}{12} =6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-136)+64}{2*6}=\frac{200}{12} =16+2/3 $
| 2x3.14x=1004.8 | | (x-3)-3=17 | | 5p-8p=3(p+4) | | 2•3.14x=1004.8 | | (x+2)+x=5 | | 3n–15+n=101 | | 14/32=x/40 | | -3(1-6)=2(b+1) | | 40/14=x/32 | | 5(x+6=74x | | 5x+6=2x+21=54 | | 40/32=x/14 | | x+42+58=180 | | 742.35=49(x+2.15) | | 7x–5=4x+13 | | 7x=3X3+24 | | J^2+j=20 | | 2/3z=1/4+4 | | 2/3z=1/4 | | 3+2c=13 | | 50q+43=-11q+70 | | 6=2(4x+10)+5 | | -6-2/3d+13/6d=-4 | | 5-6z=9+4(2-7z) | | 4/3b-11=25b= | | 8+7h=6(5-9h) | | 90=(3x-6)+x | | y+4/5=2 | | 10-2f=9+5(8-7f) | | 8x+3=-6x+3 | | 3t–7=8t+3 | | 9^x=27^4x-1 |